

Técnicas
Según tipo de aprendizaje:
Aprendizaje Supervisado:
Desde estadística:


set.seed(123)
df <- tibble(x = c(rchisq(20, 2),rchisq(20, 10)), y = rep(c(0,1), each=20))
ggplot(df, aes(x, y))+
geom_point()+
geom_smooth(method = "glm",
method.args = list(family = "binomial"),
se = FALSE)



Desde computación:


Aprendizaje No supervisado:
Clustering:

Reducción de dimensionalidad:
Según el tipo de datos:
Datos estructurados:
Series de Tiempo:


Grafos:

Datos geográficos

Datos no estructurados:
texto:


imagenes
sonido
Desde el punto de vista del remuestreo:
- Test-train
- Cross-Validation


Desde el punto de vista de la optimización:


Flujo de trabajo

- Preprocesamiento
- Entrenamiento
- Validación
Otros temas


- Trade-off Precision-recall

LS0tCnRpdGxlOiBNYXBhIGRlIERhdGEgU2NpZW5jZV5bRGlzY2xhaW1lci4gTXVjaGFzIGRlIGxhcyBpbcOhZ2VuZXMsIGF1bnF1ZSBubyB0b2RhcywgZnVlcm9uIHRvbWFkYXMgZGUgYsO6c3F1ZWRhcyBkZSBnb29nbGUgaW3DoWdlbmVzIHkgbm8gc2UgZGVzY29ub2NlIHN1IGF1dG9yw61hLl0Kb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIHRvYzogeWVzCiAgICB0b2NfZmxvYXQ6IHllcwpkYXRlOiAiIgotLS0KCgoKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgaW5jbHVkZT1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoZGF0YXNldHMpCmBgYAoKIVtdKGltZy92ZW5uX2RzLnBuZyl7d2lkdGg9NzUwfQoKCiFbXShpbWcvbWFwLnN2Zyl7d2lkdGg9MTAwMH0KCiMgVMOpY25pY2FzCgojIyBTZWfDum4gdGlwbyBkZSBhcHJlbmRpemFqZToKCiMjIyBBcHJlbmRpemFqZSBTdXBlcnZpc2FkbzoKIyMjIyBEZXNkZSBlc3RhZMOtc3RpY2E6CgotIFtNb2RlbG8gTGluZWFsXShodHRwOi8vZmFjdWx0eS5tYXJzaGFsbC51c2MuZWR1L2dhcmV0aC1qYW1lcy9JU0wvSVNMUiUyMFNldmVudGglMjBQcmludGluZy5wZGYpCiAgICAKCmBgYHtyIGVjaG89RkFMU0V9CmdncGxvdChhdHRpdHVkZSwgYWVzKHJhdGluZywgY29tcGxhaW50cykpKwogIGdlb21fcG9pbnQoKSsKICBnZW9tX3Ntb290aChtZXRob2QgPSAnbG0nKQpgYGAKICAgIAotIFtSaWRnZSwgTGFzc28sIEVsYXN0aWMgTmV0LCBTcGxpbmVzLCBldGMuXShodHRwOi8vZmFjdWx0eS5tYXJzaGFsbC51c2MuZWR1L2dhcmV0aC1qYW1lcy9JU0wvSVNMUiUyMFNldmVudGglMjBQcmludGluZy5wZGYpCgohW10oaW1nL3JpZGdlX2xhc3NvLnBuZyl7d2lkdGg9NTAwfQogIAotIFtSZWdyZXNpw7NuIGxvZ8Otc2l0Y2FdKGh0dHA6Ly9mYWN1bHR5Lm1hcnNoYWxsLnVzYy5lZHUvZ2FyZXRoLWphbWVzL0lTTC9JU0xSJTIwU2V2ZW50aCUyMFByaW50aW5nLnBkZikKICAKYGBge3J9CnNldC5zZWVkKDEyMykKZGYgPC0gdGliYmxlKHggPSBjKHJjaGlzcSgyMCwgMikscmNoaXNxKDIwLCAxMCkpLCB5ID0gcmVwKGMoMCwxKSwgZWFjaD0yMCkpCgpnZ3Bsb3QoZGYsIGFlcyh4LCB5KSkrCiAgZ2VvbV9wb2ludCgpKwogIGdlb21fc21vb3RoKG1ldGhvZCA9ICJnbG0iLCAKICAgIG1ldGhvZC5hcmdzID0gbGlzdChmYW1pbHkgPSAiYmlub21pYWwiKSwgCiAgICBzZSA9IEZBTFNFKQpgYGAKCi0gW1N1cHBvcnQgVmVjdG9yIE1hY2hpbmVdKGh0dHA6Ly9mYWN1bHR5Lm1hcnNoYWxsLnVzYy5lZHUvZ2FyZXRoLWphbWVzL0lTTC9JU0xSJTIwU2V2ZW50aCUyMFByaW50aW5nLnBkZikKCiFbXShpbWcvU1ZNX21hcmdpbi5wbmcpe3dpZHRoPTUwMH0KCi0gW05haXZlIEJheWVzXShodHRwOi8vcHJvZnNpdGUudW0uYWMuaXIvfm1vbnNlZmkvbWFjaGluZS1sZWFybmluZy9wZGYvTWFjaGluZS1MZWFybmluZy1Ub20tTWl0Y2hlbGwucGRmKQogIAohW10oaW1nL05CXzEucG5nKXt3aWR0aD01MDB9CiFbXShpbWcvTkJfMi5wbmcpe3dpZHRoPTc1MH0KICAKLSBbTWFya292IGNoYWluc10oaHR0cHM6Ly93ZWIuc3RhbmZvcmQuZWR1L35oYXN0aWUvUGFwZXJzL0VTTElJLnBkZil7d2lkdGg9NTAwfQotIC4uLgoKCiMjIyMgRGVzZGUgY29tcHV0YWNpw7NuOgoKLSBbU2lzdGVtYSBleHBlcnRvXShodHRwOi8vcHJvZnNpdGUudW0uYWMuaXIvfm1vbnNlZmkvbWFjaGluZS1sZWFybmluZy9wZGYvTWFjaGluZS1MZWFybmluZy1Ub20tTWl0Y2hlbGwucGRmKQotIFtLIG5lYXJlc3QgbmVpZ2hib3JzXShodHRwOi8vcHJvZnNpdGUudW0uYWMuaXIvfm1vbnNlZmkvbWFjaGluZS1sZWFybmluZy9wZGYvTWFjaGluZS1MZWFybmluZy1Ub20tTWl0Y2hlbGwucGRmKQohW10oaW1nL2tubi5wbmcpCi0gW8OBcmJvbGVzIGRlIGRlY2lzacOzbl0oaHR0cDovL3Byb2ZzaXRlLnVtLmFjLmlyL35tb25zZWZpL21hY2hpbmUtbGVhcm5pbmcvcGRmL01hY2hpbmUtTGVhcm5pbmctVG9tLU1pdGNoZWxsLnBkZikKCiFbXShpbWcvd2hhdC1pcy1hLWRlY2lzaW9uLXRyZWUucG5nKXt3aWR0aD03NTB9ICAgIAoKLSBbRW5zYW1ibGVzIGRlIMOhcmJvbGVzXShodHRwczovL2RvYy5sYWdvdXQub3JnL090aGVycy9EYXRhJTIwTWluaW5nL0Vuc2VtYmxlJTIwTWV0aG9kcyUyMGluJTIwRGF0YSUyME1pbmluZ18lMjBJbXByb3ZpbmclMjBBY2N1cmFjeSUyMHRocm91Z2glMjBDb21iaW5pbmclMjBQcmVkaWN0aW9ucyUyMCU1QlNlbmklMjAlMjYlMjBFbGRlciUyMDIwMTAtMDItMjQlNUQucGRmKQotIFtSYW5kb20gRm9yZXN0IChCYWdnaW5nKV0oaHR0cHM6Ly9ib29rZG93bi5vcmcvY29udGVudC8yMDMxL2Vuc2FtYmxhZG9yZXMtcmFuZG9tLWZvcmVzdC1wYXJ0ZS1pLmh0bWwjcmFuZG9tLWZvcmVzdCkKIVtdKGltZy9SRi5wbmcpe3dpZHRoPTc1MH0gICAgCi0gW1hHLUJPT1NUIChCb29zdGluZyldKGh0dHBzOi8vbWFjaGluZWxlYXJuaW5nbWFzdGVyeS5jb20vZ2VudGxlLWludHJvZHVjdGlvbi14Z2Jvb3N0LWFwcGxpZWQtbWFjaGluZS1sZWFybmluZy8pCiAgICAKIVtdKGltZy9ib29zdGVkLXRyZWVzLXByb2Nlc3MucG5nKXt3aWR0aD03NTB9ICAgIAoKLSBZIG11Y2hvcyBtw6FzLi4uCgojIyMjIERlZXAgTGVhcm5pbmc6CgotIFtNdWx0aS1sYXllciBwZXJjZXB0cm9uIG5ldHdvcmtdKGh0dHBzOi8vd3d3LmRlZXBsZWFybmluZ2Jvb2sub3JnL2NvbnRlbnRzL21scC5odG1sKQohW01MUF0oaW1nL25uLnBuZyl7d2lkdGg9NTAwfQotIFtDb252b2x1dGlvbmFsIE5ldXJhbCBOZXR3b3JrXShodHRwOi8vY3MyMzFuLmdpdGh1Yi5pby9jb252b2x1dGlvbmFsLW5ldHdvcmtzLykKIVtDTk5dKGltZy9jbm4ucG5nKXt3aWR0aD0xMDAwfQotIFtMb25nLXNob3J0IFRlcm0gTWVtb3J5IE5ldXJhbCBOZXR3b3JrXShodHRwczovL3d3dy5kZWVwbGVhcm5pbmdib29rLm9yZy9jb250ZW50cy9ybm4uaHRtbCkKLSAuLi4KICAgIAoKIyMjIEFwcmVuZGl6YWplIE5vIHN1cGVydmlzYWRvOgoKIyMjIyBDbHVzdGVyaW5nOgoKLSBbSy1tZWFuc10oaHR0cDovL2ZhY3VsdHkubWFyc2hhbGwudXNjLmVkdS9nYXJldGgtamFtZXMvSVNML0lTTFIlMjBTZXZlbnRoJTIwUHJpbnRpbmcucGRmKQotIFtQYXRpdGlvbiBhcm91bmQgbWVkaW9pZHNdKGh0dHBzOi8vd3d3LmNzLnVtYi5lZHUvY3M3MzgvcGFtMS5wZGYpCi0gW0RCU0NBTl0oaHR0cHM6Ly9lbHZleC51Z3IuZXMvaWRiaXMvZG0vc2xpZGVzLzQzJTIwQ2x1c3RlcmluZyUyMC0lMjBEZW5zaXR5LnBkZikKCiFbXShpbWcvY2x1c3Rlcl9jb21wYXJpc29uLnBuZyl7d2lkdGg9NTAwfQogICAgCiMjIyMgUmVkdWNjacOzbiBkZSBkaW1lbnNpb25hbGlkYWQ6Ci0gW1BDQV0oaHR0cDovL3d3dy51Yi5lZHUvc3RhdC9wZXJzb25hbC9jdWFkcmFzL21ldG9kb3MucGRmKQohW10oaW1nL1BDQWV4YW1wbGUucG5nKXt3aWR0aD01MDB9Ci0gW0xTSV0oaHR0cDovL2xzYS5jb2xvcmFkby5lZHUvcGFwZXJzL2RwMS5MU0FpbnRyby5wZGYpCi0gW1QtU05FXShodHRwczovL2x2ZG1hYXRlbi5naXRodWIuaW8vdHNuZS8pCiFbXShpbWcvdHNuZS5wbmcpe3dpZHRoPTUwMH0KCgojIyMgW0FwcmVuZGl6YWplIFNlbWktc3VwZXJ2aXNhZG9dKGh0dHBzOi8vd3d3LmdlZWtzZm9yZ2Vla3Mub3JnL21sLXNlbWktc3VwZXJ2aXNlZC1sZWFybmluZy8pCgohW10oaW1nL3NlbWlzdXBlcnZpc2VkLnBuZyl7d2lkdGg9NzUwfQoKICAgIAoKIyMjIFtNb2RlbG9zIGdlbmVyYXRpdm9zXShodHRwczovL3d3dy5vcmVpbGx5LmNvbS9saWJyYXJ5L3ZpZXcvZ2VuZXJhdGl2ZS1kZWVwLWxlYXJuaW5nLzk3ODE0OTIwNDE5MzEvY2gwMS5odG1sKQoKUG9yIGVqZW1wbG86IFtodHRwczovL3RyYW5zZm9ybWVyLmh1Z2dpbmdmYWNlLmNvL2RvYy9ncHQyLWxhcmdlXShodHRwczovL3RyYW5zZm9ybWVyLmh1Z2dpbmdmYWNlLmNvL2RvYy9ncHQyLWxhcmdlKQoKIyMgU2Vnw7puIGVsIHRpcG8gZGUgZGF0b3M6CgojIyMgRGF0b3MgZXN0cnVjdHVyYWRvczoKCiMjIyMgRGF0b3MgdGFidWxhZG9zCgpgYGB7cn0KaXJpcwpgYGAKCiMjIyMgU2VyaWVzIGRlIFRpZW1wbzoKCiFbXShpbWcvdGltZXNlcmllcy5wbmcpe3dpZHRoPTc1MH0KCi0gW0FSSU1BXShodHRwczovL290ZXh0cy5jb20vZnBwMi9hcmltYS5odG1sKQotIFtXYXZlbGV0c10oaHR0cDovL3NlZGljaS51bmxwLmVkdS5hci9iaXRzdHJlYW0vaGFuZGxlLzEwOTE1LzI0Mjg5L0RvY3VtZW50b19jb21wbGV0by5wZGY/c2VxdWVuY2U9MSkKCiFbXShpbWcvd2F2ZWxldHMucG5nKXt3aWR0aD01MDB9CgojIyMjIEdyYWZvczoKCiFbXShpbWcvbmV0d29yay5wbmcpe3dpZHRoPTUwMH0KCiMjIyMgRGF0b3MgZ2VvZ3LDoWZpY29zCgohW10oaW1nL2dlb2RhdGEuZ2lmKXt3aWR0aD01MDB9CgojIyMgRGF0b3Mgbm8gZXN0cnVjdHVyYWRvczoKIyMjIyB0ZXh0bzoKCi0gW0xEQV0oaHR0cDovL3d3dy5qbWxyLm9yZy9wYXBlcnMvdm9sdW1lMy9ibGVpMDNhL2JsZWkwM2EucGRmKQoKIVtdKGltZy9MREEucG5nKXt3aWR0aD01MDB9CgotIFtXb3JkIEVtYmVkZGluZ3NdKGh0dHBzOi8vbWVkaXVtLmNvbS9AZ3J1aXpkZXZpbGxhL2ludHJvZHVjY2klQzMlQjNuLWEtd29yZDJ2ZWMtc2tpcC1ncmFtLW1vZGVsLTQ4MDBmNzJjODcxZikKCiFbXShpbWcvd29yZF9lbWJlZGRpbmdzLnBuZyl7d2lkdGg9NTAwfQoKIyMjIyBpbWFnZW5lcwojIyMjIHNvbmlkbwoKCiMjIERlc2RlIGVsIHB1bnRvIGRlIHZpc3RhIGRlbCByZW11ZXN0cmVvOgoKLSBUZXN0LXRyYWluCi0gQ3Jvc3MtVmFsaWRhdGlvbgoKIVtdKGltZy90ZXN0dHJhaW5zcGxpdC5wbmcpe3dpZHRoPTUwMH0KCgotIFtCb290c3RyYXBpbmddKGh0dHBzOi8vbWFjaGluZWxlYXJuaW5nbWFzdGVyeS5jb20vYS1nZW50bGUtaW50cm9kdWN0aW9uLXRvLXRoZS1ib290c3RyYXAtbWV0aG9kLykKCiFbXShpbWcvYm9vdHN0cmFwLXJlc2FtcGxpbmcucG5nKXt3aWR0aD03NTB9CgoKIyMgRGVzZGUgZWwgcHVudG8gZGUgdmlzdGEgZGUgbGEgb3B0aW1pemFjacOzbjoKLSBbR3JhZGllbnQgRGVzY2VudF0oaHR0cHM6Ly9oYWNrZXJub29uLmNvbS9ncmFkaWVudC1kZXNjZW50LWF5bmstN2NiZTk1YTc3OGRhKQoKIVtdKGltZy9ncmFkaWVudGRlc2NlbnQucG5nKXt3aWR0aD01MDB9CgoKLSBbQWxnb3LDrXRtb3MgR2Vuw6l0aWNvc10oaHR0cHM6Ly90b3dhcmRzZGF0YXNjaWVuY2UuY29tL2ludHJvZHVjdGlvbi10by1nZW5ldGljLWFsZ29yaXRobXMtaW5jbHVkaW5nLWV4YW1wbGUtY29kZS1lMzk2ZTk4ZDhiZjMpCgohW10oaW1nL2dhZGlhZ3JhbS5wbmcpe3dpZHRoPTUwMH0KCi0gW0luZmVyZW5jaWEgVmFyaWFjaW9uYWxdKGh0dHBzOi8vYXJ4aXYub3JnL3BkZi8xNjAxLjAwNjcwLnBkZikKCgojIEZsdWpvIGRlIHRyYWJham8KClshW10oaW1nL2RhdGEtc2NpZW5jZS13b3JrZmxvdy5wbmcpe3dpZHRoPTEwMDB9XShodHRwczovL3I0ZHMuaGFkLmNvLm56L2ludHJvZHVjdGlvbi5odG1sKQoKMS4gUHJlcHJvY2VzYW1pZW50bwoxLiBFbnRyZW5hbWllbnRvCjEuIFZhbGlkYWNpw7NuCgojIE1ldGEgZmx1am8gZGUgdHJhYmFqbwoKIVtdKGltZy9naXQuanBlZyl7d2lkdGg9MjAwfQohW10oaW1nL2dpdF9mbG93LnBuZyl7d2lkdGg9MTAwMH0KCkVqZW1wbG86IFtodHRwczovL2dpdGh1Yi5jb20vRGllZ29Lb3ovaW50cm9fZHNdKGh0dHBzOi8vZ2l0aHViLmNvbS9EaWVnb0tvei9pbnRyb19kcykKCiMgT3Ryb3MgdGVtYXMKCi0gW1NvYnJlYWp1c3RlXShodHRwczovL2RpZWdva296LnNoaW55YXBwcy5pby9vdmVyZml0dGluZy8pCgohW10oaW1nL292ZXJmaXR0aW5nLnBuZyl7d2lkdGg9NzUwfQoKCi0gW1RyYWRlLW9mZiBzZXNnbyB2YXJpYW56YV0oaHR0cDovL2ZhY3VsdHkubWFyc2hhbGwudXNjLmVkdS9nYXJldGgtamFtZXMvSVNML0lTTFIlMjBTZXZlbnRoJTIwUHJpbnRpbmcucGRmKQoKIVtdKGltZy9iaWFzdmFyaWFuY2UuanBnKXt3aWR0aD01MDB9CgotIFRyYWRlLW9mZiBQcmVjaXNpb24tcmVjYWxsCgohW10oaW1nL3ByZWNyZWNhbGwucG5nKXt3aWR0aD01MDB9CgojIEltcGxlbWVudGFjaW9uZXM6CgotIFtDYXJldF0oaHR0cDovL3RvcGVwby5naXRodWIuaW8vY2FyZXQvaW5kZXguaHRtbCkKLSBbVGlkeW1vZGVsc10oaHR0cHM6Ly9ydmlld3MucnN0dWRpby5jb20vMjAxOS8wNi8xOS9hLWdlbnRsZS1pbnRyby10by10aWR5bW9kZWxzLykKLSBbU2NpLWtpdCBsZWFybl0oaHR0cHM6Ly9zY2lraXQtbGVhcm4ub3JnL3N0YWJsZS8pCgotIFtIMjBdKGh0dHBzOi8vd3d3Lmgyby5haS8pCgotIFtHb29nbGUgQ2xvdWRdKGh0dHBzOi8vY2xvdWQuZ29vZ2xlLmNvbS9tbC1lbmdpbmUvP2hsPWVzLTQxOSkKCi0gW1dhdHNvbiBJQk1dKGh0dHBzOi8vd3d3LmlibS5jb20vd2F0c29uKQoKCgoKCgo=